Near-Optimal Ambiguity Sets for Distributionally Robust Optimization

نویسنده

  • Vishal Gupta
چکیده

We propose a novel, Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO). The key idea is to measure the relative size between a candidate ambiguity set and an asymptotically optimal set as the amount of data grows large. This asymptotically optimal set is provably the smallest convex ambiguity set that satisfies a specific, Bayesian robustness guarantee, i.e., it is a subset of any other convex set that also satisfies this guarantee. Perhaps surprisingly, we show what existing, popular ambiguity set proposals that are based on statistical confidence regions are necessarily significantly larger than this asymptotically optimal set; the ratio of their sizes scales with the square root of the dimension of the ambiguity. These results suggest that current DRO models utilizing these popular ambiguity sets are unnecessarily conservative. Consequently, we also propose a new class of ambiguity sets which satisfy our Bayesian robustness guarantee, are tractable, enjoy the usual asymptotic convergence properties, and, most importantly, are only a small, explicitly known factor larger than the asymptotically optimal set. We discuss extensively how these results give rise to simple guidelines for practitioners with respect to selecting ambiguity sets and formulating DRO models, with special emphasis on the case of ambiguity sets for finite, discrete probability vectors. Computational evidence in portfolio allocation using real and simulated data confirm that these theoretical framework and results provide useful, practical insight into the empirical performance of DRO models in real applications, and that our new near-optimal sets outperform their traditional confidence region variants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-Optimal Bayesian Ambiguity Sets for 3 Distributionally Robust Optimization 4

We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific asymptotically optimal set. As the amount of data grows large, this asymptotica...

متن کامل

Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization

We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific, asymptotically optimal set. This asymptotically optimal set is provably the sm...

متن کامل

Distributionally Robust Optimization for Sequential Decision Making

The distributionally robust Markov Decision Process approach has been proposed in the literature, where the goal is to seek a distributionally robust policy that achieves the maximal expected total reward under the most adversarial joint distribution of uncertain parameters. In this paper, we study distributionally robust MDP where ambiguity sets for uncertain parameters are of a format that ca...

متن کامل

Distributionally Robust Convex Optimization

Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose...

متن کامل

Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets

We consider a distributionally robust optimization problem where the ambiguity set of probability distributions is characterized by a tractable conic representable support set and expectation constraints. Specifically, we propose and motivate a new class of infinitely constrained ambiguity sets in which the number of expectation constraints could potentially be infinite. We show how the infinit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015